国产深夜男女无套内射,美女下部私密的图片无遮挡,日本少妇做爰全过程毛片,70歳の熟女セックス合集,国产精品美女久久久久久

  • 服務(wù)熱線:13728883399
  • wangyp@shangeai.com

全面解讀人臉識(shí)別技術(shù)發(fā)展史

時(shí)間:2018-07-16 17:39:06點(diǎn)擊:515次

要說(shuō)人臉識(shí)別技術(shù)的爆發(fā),當(dāng)屬去年9月份蘋(píng)果iPhone x的發(fā)布,不再需要指紋,只需要掃描面部就可以輕松解鎖手機(jī)。那么人臉識(shí)別究竟是什么呢?

人臉識(shí)別技術(shù),是基于人的臉部特征信息進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù)。用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測(cè)和跟蹤人臉,進(jìn)而對(duì)檢測(cè)到的人臉進(jìn)行臉部的一系列相關(guān)技術(shù),通常也叫做人像識(shí)別、面部識(shí)別。

人臉識(shí)別技術(shù)主要是通過(guò)人臉圖像特征的提取與對(duì)比來(lái)進(jìn)行的。人臉識(shí)別系統(tǒng)將提取的人臉圖像的特征數(shù)據(jù)與數(shù)據(jù)庫(kù)中存儲(chǔ)的特征模板進(jìn)行搜索匹配,通過(guò)設(shè)定一個(gè)閾值,當(dāng)相似度超過(guò)這一閾值,則把匹配得到的結(jié)果輸出。

廣義的人臉識(shí)別實(shí)際包括構(gòu)建人臉識(shí)別系統(tǒng)的一系列相關(guān)技術(shù),包括人臉圖像采集、人臉定位、人臉識(shí)別預(yù)處理、身份確認(rèn)以及身份查找等;而狹義的人臉識(shí)別特指通過(guò)人臉進(jìn)行身份確認(rèn)或者身份查找的技術(shù)或系統(tǒng)。

人臉識(shí)別技術(shù)發(fā)展

早在20世紀(jì)50年代,認(rèn)知科學(xué)家就已著手對(duì)人臉識(shí)別展開(kāi)研究。20世紀(jì)60年代,人臉識(shí)別工程化應(yīng)用研究正式開(kāi)啟。當(dāng)時(shí)的方法主要利用了人臉的幾何結(jié)構(gòu),通過(guò)分析人臉器官特征點(diǎn)及其之間的拓?fù)潢P(guān)系進(jìn)行辨識(shí)。這種方法簡(jiǎn)單直觀,但是一旦人臉姿態(tài)、表情發(fā)生變化,則精度嚴(yán)重下降。

21世紀(jì)的前十年,隨著機(jī)器學(xué)習(xí)理論的發(fā)展,學(xué)者們相繼探索出了基于遺傳算法、支持向量機(jī)(Support Vector Machine, SVM)、boosting、流形學(xué)習(xí)以及核方法等進(jìn)行人臉識(shí)別。2009年至2012年,稀疏表達(dá)(Sparse Representation)成為當(dāng)時(shí)的研究熱點(diǎn)。

與此同時(shí),業(yè)界也基本達(dá)成共識(shí):基于人工精心設(shè)計(jì)的局部描述子進(jìn)行特征提取和子空間方法進(jìn)行特征選擇能夠取得最好的識(shí)別效果。Gabor及LBP特征描述子是迄今為止在人臉識(shí)別領(lǐng)域最為成功的兩種人工設(shè)計(jì)局部描述子。這期間,對(duì)各種人臉識(shí)別影響因子的針對(duì)性處理也是那一階段的研究熱點(diǎn),比如人臉光照歸一化、人臉姿態(tài)校正、人臉超分辨以及遮擋處理等。

自此之后,研究者們不斷改進(jìn)網(wǎng)絡(luò)結(jié)構(gòu),同時(shí)擴(kuò)大訓(xùn)練樣本規(guī)模,將LFW上的識(shí)別精度推到99.5%以上。

人臉識(shí)別十大關(guān)鍵技術(shù)

01

人臉檢測(cè)(Face Detection)

“人臉檢測(cè)(Face Detection)”的作用就是要檢測(cè)出圖像中人臉?biāo)谖恢谩?

人臉檢測(cè)算法的原理簡(jiǎn)單來(lái)說(shuō)是一個(gè)“掃描”加“判定”的過(guò)程。即首先在整個(gè)圖像范圍內(nèi)掃描,再逐個(gè)判定候選區(qū)域是否是人臉的過(guò)程。因此人臉檢測(cè)算法的計(jì)算速度會(huì)跟圖像尺寸大小以及圖像內(nèi)容相關(guān)。在實(shí)際計(jì)算時(shí),我們可以通過(guò)設(shè)置“輸入圖像尺寸”、或“最小臉尺寸限制”、“人臉數(shù)量上限”的方式來(lái)加速算法。

02

人臉配準(zhǔn)(Face Alignment)

“人臉配準(zhǔn)(Face Alignment)”所實(shí)現(xiàn)的目的是定位出人臉上五官關(guān)鍵點(diǎn)坐標(biāo)。

當(dāng)前效果較好的一些人臉配準(zhǔn)技術(shù)基本通過(guò)深度學(xué)習(xí)框架實(shí)現(xiàn)。這些方法都是基于人臉檢測(cè)的坐標(biāo)框,按某種事先設(shè)定規(guī)則將人臉區(qū)域摳取出來(lái),縮放到固定尺寸,然后進(jìn)行關(guān)鍵點(diǎn)位置的計(jì)算。另外,相對(duì)于人臉檢測(cè),或者是后面將提到的人臉特征提取的過(guò)程,人臉配準(zhǔn)算法的計(jì)算耗時(shí)都要少很多。

03

人臉屬性識(shí)別(Face Attribute)

“人臉屬性識(shí)別(Face Attribute)”是識(shí)別出人臉的性別、年齡、姿態(tài)、表情等屬性值的一項(xiàng)技術(shù)。這在有些相機(jī)APP中有所應(yīng)用,可以自動(dòng)識(shí)別攝像頭視野中人物的性別、年齡等特征并標(biāo)注出來(lái)。

人臉的屬性識(shí)別包括性別識(shí)別、年齡估計(jì)、表情識(shí)別、姿態(tài)識(shí)別、發(fā)型識(shí)別等等方面。一般來(lái)說(shuō)每種屬性的識(shí)別算法過(guò)程是獨(dú)立的,但是有一些新型的基于深度學(xué)習(xí)實(shí)現(xiàn)的算法可以實(shí)現(xiàn)同時(shí)輸出年齡、性別、姿態(tài)、表情等屬性識(shí)別結(jié)果。

04

人臉提特征(Face Feature Extraction)

“人臉提特征(Face Feature Extraction)”是將一張人臉圖像轉(zhuǎn)化為可以表征人臉特點(diǎn)的特征,具體表現(xiàn)形式為一串固定長(zhǎng)度的數(shù)值。

人臉提特征過(guò)程的輸入是 “一張人臉圖”和“人臉五官關(guān)鍵點(diǎn)坐標(biāo)”,輸出是人臉相應(yīng)的一個(gè)數(shù)值串(特征)。人臉提特征算法實(shí)現(xiàn)的過(guò)程為:首先將五官關(guān)鍵點(diǎn)坐標(biāo)進(jìn)行旋轉(zhuǎn)、縮放等等操作來(lái)實(shí)現(xiàn)人臉對(duì)齊,然后在提取特征并計(jì)算出數(shù)值串。

05

人臉比對(duì)(Face Compare)

“人臉比對(duì)(Face Compare)”算法實(shí)現(xiàn)的目的是衡量?jī)蓚€(gè)人臉之間相似度。

人臉比對(duì)算法的輸入是兩個(gè)人臉特征人臉特征由前面的人臉提特征算法獲得,輸出是兩個(gè)特征之間的相似度。

06

人臉驗(yàn)證(Face Verification)

“人臉驗(yàn)證(Face Verification)”是判定兩個(gè)人臉圖是否為同一人的算法。

它的輸入是兩個(gè)人臉特征,通過(guò)人臉比對(duì)獲得兩個(gè)人臉特征的相似度,通過(guò)與預(yù)設(shè)的閾值比較來(lái)驗(yàn)證這兩個(gè)人臉特征是否屬于同一人。

07

人臉識(shí)別(Face Recognition)

“人臉識(shí)別(Face Recognition)”是識(shí)別出輸入人臉圖對(duì)應(yīng)身份的算法。

它的輸入為一個(gè)人臉特征,通過(guò)和注冊(cè)在庫(kù)中N個(gè)身份對(duì)應(yīng)的特征進(jìn)行逐個(gè)比對(duì),找出“一個(gè)”與輸入特征相似度最高的特征。將這個(gè)最高相似度值和預(yù)設(shè)的閾值相比較,如果大于閾值,則返回該特征對(duì)應(yīng)的身份,否則返回“不在庫(kù)中”。

08

人臉檢索(Face Retrieval)

“人臉檢索”是查找和輸入人臉相似的人臉序列的算法。

人臉檢索通過(guò)將輸入的人臉和一個(gè)集合中的說(shuō)有人臉進(jìn)行比對(duì),根據(jù)比對(duì)后的相似度對(duì)集合中的人臉進(jìn)行排序。

09

人臉聚類(Face Cluster)

“人臉聚類(Face Cluster)”是將一個(gè)集合內(nèi)的人臉根據(jù)身份進(jìn)行分組的算法。

在沒(méi)有進(jìn)行人工身份標(biāo)注前,只知道分到一個(gè)組的人臉是屬于同一個(gè)身份,但不知道確切身份。

10

人臉活體(FaceLiveness)

“人臉活體(Face Liveness)”是判斷人臉圖像是來(lái)自真人還是來(lái)自攻擊假體(照片、視頻等)的方法。

在我們生活環(huán)境中,人臉認(rèn)證系統(tǒng)中主要容易受到這種手段欺騙:

(1)用偷拍的照片假冒真實(shí)人;

(2)在公開(kāi)場(chǎng)合錄的視頻或網(wǎng)上公開(kāi)的視頻片段行騙;

(3)用計(jì)算機(jī)輔助軟件設(shè)計(jì)的三維模型欺騙;

(4)用蠟或塑料等材質(zhì)構(gòu)造的三維雕像欺騙。

現(xiàn)在人臉活體檢測(cè)技術(shù)的研究顯得異常重要。對(duì)于照片欺騙,主要是根據(jù)分辨率、三位三維信息、眼動(dòng)等來(lái)進(jìn)行區(qū)分;對(duì)于視頻欺騙,根據(jù)三維信息、光線等來(lái)區(qū)分。

人臉識(shí)別技術(shù)的主要用途

人臉識(shí)別技術(shù)應(yīng)用于鐵路安防系統(tǒng)

隨著技術(shù)的進(jìn)步,人員組織的不斷復(fù)雜化,鐵路安全形勢(shì)不斷面臨新的挑戰(zhàn)。火車票實(shí)名制有效阻止了不法分子進(jìn)入車站,但是,目前鐵路客運(yùn)安全檢查,基本還是靠安檢員來(lái)檢查票、證、人是否一致,而證件照片往往是多年前的照片,安檢員很難辨認(rèn),辨別度很低。

人臉識(shí)別技術(shù)應(yīng)用于教育領(lǐng)域

近年來(lái),從中考、高考等升學(xué)考試,到執(zhí)業(yè)資格、晉級(jí)升職等等考試,均不同程度地出現(xiàn)了替考現(xiàn)象,而利用人臉識(shí)別技術(shù)實(shí)現(xiàn)證件內(nèi)照片特征和實(shí)時(shí)人臉照片特征比對(duì)識(shí)別,辨別考生身份,可防止考場(chǎng)替考現(xiàn)象的發(fā)生。

人臉識(shí)別技術(shù)推進(jìn)智能城市建設(shè)

隨著人類社會(huì)的不斷發(fā)展,未來(lái)城市將承載越來(lái)越多的人口,為實(shí)現(xiàn)城市可持續(xù)發(fā)展,建設(shè)智慧城市已成為當(dāng)今世界城市發(fā)展不可逆轉(zhuǎn)的歷史潮流。而在智慧城市的建設(shè)過(guò)程中,需注重對(duì)信息的結(jié)構(gòu)化存儲(chǔ)、分析挖掘,人臉的結(jié)構(gòu)化云識(shí)別儲(chǔ)存是構(gòu)建整個(gè)智慧城市基礎(chǔ)數(shù)據(jù)之一,是智慧城市云儲(chǔ)存體系中的不可或缺的一部分。

人臉識(shí)別的未來(lái)

隨著大數(shù)據(jù)、共享時(shí)代的來(lái)臨,數(shù)據(jù)安全問(wèn)題也越發(fā)被重視起來(lái),以人臉識(shí)別為代表的新一代技術(shù)革命已經(jīng)展開(kāi)。

原文標(biāo)題:AI|一文讀懂:人臉識(shí)別60年技術(shù)發(fā)展史

文章出處:【微信號(hào):THundersoft,微信公眾號(hào):Thundersoft中科創(chuàng)達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

  • 標(biāo)簽: